3.4.79 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [379]

Optimal. Leaf size=143 \[ \frac {a^{5/2} (5 B+2 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {a^3 (3 B+14 C) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (B+2 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \]

[Out]

a^(5/2)*(5*B+2*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/3*a*C*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c
)/d-1/3*a^3*(3*B+14*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2*a^2*(B+2*C)*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.35, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {4157, 4103, 4100, 3859, 209} \begin {gather*} \frac {a^{5/2} (5 B+2 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {a^3 (3 B+14 C) \sin (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 (B+2 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}+\frac {2 a C \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(5/2)*(5*B + 2*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (a^3*(3*B + 14*C)*Sin[c + d*
x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a^2*(B + 2*C)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d + (2*a*C*(a + a
*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) (a+a \sec (c+d x))^{5/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \cos (c+d x) (a+a \sec (c+d x))^{5/2} (B+C \sec (c+d x)) \, dx\\ &=\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2}{3} \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (\frac {1}{2} a (3 B-2 C)+\frac {3}{2} a (B+2 C) \sec (c+d x)\right ) \, dx\\ &=\frac {2 a^2 (B+2 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {4}{3} \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (-\frac {1}{4} a^2 (3 B+14 C)+\frac {1}{4} a^2 (9 B+10 C) \sec (c+d x)\right ) \, dx\\ &=-\frac {a^3 (3 B+14 C) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (B+2 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {1}{2} \left (a^2 (5 B+2 C)\right ) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=-\frac {a^3 (3 B+14 C) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (B+2 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {\left (a^3 (5 B+2 C)\right ) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {a^{5/2} (5 B+2 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {a^3 (3 B+14 C) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (B+2 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.84, size = 126, normalized size = 0.88 \begin {gather*} \frac {a^2 \sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sqrt {a (1+\sec (c+d x))} \left (3 \sqrt {2} (5 B+2 C) \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+(3 B+4 C+4 (3 B+8 C) \cos (c+d x)+3 B \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{6 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^2*Sec[(c + d*x)/2]*Sec[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(3*Sqrt[2]*(5*B + 2*C)*ArcSin[Sqrt[2]*Sin[(c + d
*x)/2]]*Cos[c + d*x]^(3/2) + (3*B + 4*C + 4*(3*B + 8*C)*Cos[c + d*x] + 3*B*Cos[2*(c + d*x)])*Sin[(c + d*x)/2])
)/(6*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(255\) vs. \(2(127)=254\).
time = 50.03, size = 256, normalized size = 1.79

method result size
default \(-\frac {\left (15 B \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+6 C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+6 B \left (\cos ^{3}\left (d x +c \right )\right )+6 B \left (\cos ^{2}\left (d x +c \right )\right )+32 C \left (\cos ^{2}\left (d x +c \right )\right )-12 B \cos \left (d x +c \right )-28 C \cos \left (d x +c \right )-4 C \right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, a^{2}}{6 d \sin \left (d x +c \right ) \cos \left (d x +c \right )}\) \(256\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/6/d*(15*B*cos(d*x+c)*sin(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+6*C*cos(d*x+c)*sin(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+6*B*cos(d*x+c)^3+6*
B*cos(d*x+c)^2+32*C*cos(d*x+c)^2-12*B*cos(d*x+c)-28*C*cos(d*x+c)-4*C)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(
d*x+c)/cos(d*x+c)*a^2

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 2780 vs. \(2 (127) = 254\).
time = 0.70, size = 2780, normalized size = 19.44 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(3*(18*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(5/2)*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
^(1/4)*((4*a^2*sin(3*d*x + 3*c) + 5*a^2*sin(2*d*x + 2*c) + 4*a^2*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1)) + (a^2*cos(2*d*x + 2*c)^2*sin(d*x + c) + a^2*sin(2*d*x + 2*c)^2*sin(d*x + c) + 2*a^2
*cos(2*d*x + 2*c)*sin(d*x + c) + a^2*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) -
(4*a^2*cos(3*d*x + 3*c) + 5*a^2*cos(2*d*x + 2*c) + 4*a^2*cos(d*x + c) + 5*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1)) - ((a^2*cos(d*x + c) - a^2)*cos(2*d*x + 2*c)^2 + a^2*cos(d*x + c) + (a^2*cos(d*x + c
) - a^2)*sin(2*d*x + 2*c)^2 - a^2 + 2*(a^2*cos(d*x + c) - a^2)*cos(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 5*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x +
 2*c) + a^2)*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arcta
n2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))
, (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) -
 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1)) + 1) + (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a
^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*B/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
 + 2*cos(2*d*x + 2*c) + 1) + 2*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^
(5/2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) -
 3*a^2*sin(2*d*x + 2*c) - 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
))))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a)
+ 3*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c)
+ a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
+ 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2
*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((...

________________________________________________________________________________________

Fricas [A]
time = 3.84, size = 386, normalized size = 2.70 \begin {gather*} \left [\frac {3 \, {\left ({\left (5 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (5 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (3 \, B a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right ) + 2 \, C a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {3 \, {\left ({\left (5 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (5 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (3 \, B a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right ) + 2 \, C a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/6*(3*((5*B + 2*C)*a^2*cos(d*x + c)^2 + (5*B + 2*C)*a^2*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*s
qrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c)
+ 1)) + 2*(3*B*a^2*cos(d*x + c)^2 + 2*(3*B + 8*C)*a^2*cos(d*x + c) + 2*C*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), -1/3*(3*((5*B + 2*C)*a^2*cos(d*x + c)^2 + (5*B + 2*
C)*a^2*cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)
)) - (3*B*a^2*cos(d*x + c)^2 + 2*(3*B + 8*C)*a^2*cos(d*x + c) + 2*C*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 480 vs. \(2 (127) = 254\).
time = 1.98, size = 480, normalized size = 3.36 \begin {gather*} -\frac {3 \, {\left (5 \, B \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, C \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - 3 \, {\left (5 \, B \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, C \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) + \frac {4 \, {\left (3 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 9 \, \sqrt {2} C a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (3 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 7 \, \sqrt {2} C a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} + \frac {12 \, {\left (3 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - \sqrt {2} B \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

-1/6*(3*(5*B*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 2*C*sqrt(-a)*a^2*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*
x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(5*B*sqrt(-a)*a^2*sgn(cos(d*x +
c)) + 2*C*sqrt(-a)*a^2*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c
)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(3*sqrt(2)*B*a^4*sgn(cos(d*x + c)) + 9*sqrt(2)*C*a^4*sgn(cos(d*x + c)) -
 (3*sqrt(2)*B*a^4*sgn(cos(d*x + c)) + 7*sqrt(2)*C*a^4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x +
 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)) + 12*(3*sqrt(2)*(sqrt(-a)*tan(1/2
*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) - sqrt(2)*B*sqrt(-a)*a
^4*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*t
an(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^2\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^2*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________